Adjustment of Gauss-Helmert Models with Autoregressive and Student Errors
- authored by
- Boris Kargoll, Mohammad Omidalizarandi, Hamza Alkhatib
- Abstract
In this contribution, we extend the Gauss-Helmert model (GHM) with t-distributed errors (previously established by K.R. Koch) by including autoregressive (AR) random deviations. This model allows us to take into account unknown forms of colored noise as well as heavy-tailed white noise components within observed time series. We show that this GHM can be adjusted in principle through constrained maximum likelihood (ML) estimation, and also conveniently via an expectation maximization (EM) algorithm. The resulting estimator is self-tuning in the sense that the tuning constant, which occurs here as the degree of freedom of the underlying scaled t-distribution and which controls the thickness of the tails of that distribution’s probability distribution function, is adapted optimally to the actual data characteristics. We use this model and algorithm to adjust 2D measurements of a circle within a closed-loop Monte Carlo simulation and subsequently within an application involving GNSS measurements.
- Organisation(s)
-
Geodetic Institute
- External Organisation(s)
-
Anhalt University of Applied Sciences
- Type
- Conference contribution
- Pages
- 79-87
- No. of pages
- 9
- Publication date
- 26.06.2020
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Computers in Earth Sciences, Geophysics
- Electronic version(s)
-
https://doi.org/10.1007/1345_2019_82 (Access:
Closed)
-
Details in the research portal "Research@Leibniz University"