A Bayesian Nonlinear Regression Model Based on t-Distributed Errors
- authored by
- Alexander Dorndorf, Boris Kargoll, Jens André Paffenholz, Hamza Alkhatib
- Abstract
In this contribution, a robust Bayesian approach to adjusting a nonlinear regression model with t-distributed errors is presented. In this approach the calculation of the posterior model parameters is feasible without linearisation of the functional model. Furthermore, the integration of prior model parameters in the form of any family of prior distributions is demonstrated. Since the posterior density is then generally non-conjugated, Monte Carlo methods are used to solve for the posterior numerically. The desired parameters are approximated by means of Markov chain Monte Carlo using Gibbs samplers and Metropolis-Hastings algorithms. The result of the presented approach is analysed by means of a closed-loop simulation and a real world application involving GNSS observations with synthetic outliers.
- Organisation(s)
-
Geodetic Institute
- Type
- Conference contribution
- Pages
- 127-135
- No. of pages
- 9
- Publication date
- 2019
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Computers in Earth Sciences, Geophysics
- Electronic version(s)
-
https://doi.org/10.1007/1345_2019_76 (Access:
Closed)
-
Details in the research portal "Research@Leibniz University"