Bayesian Robust Multivariate Time Series Analysis in Nonlinear Regression Models with Vector Autoregressive and t-Distributed Errors

verfasst von
Alexander Dorndorf, Boris Kargoll, Jens-André Paffenholz, Hamza Alkhatib
Abstract

Geodetic measurements rely on high-resolution sensors, but produce data sets with many observations which may contain outliers and correlated deviations. This paper proposes a powerful solution using Bayesian inference. The observed data is modeled as a multivariate time series with a stationary autoregressive (VAR) process and multivariate t-distribution for white noise. Bayes’ theorem integrates prior knowledge. Parameters, including functional, VAR coefficients, scaling, and degree of freedom of the t-distribution, are estimated with Markov Chain Monte Carlo using a Metropolis-within-Gibbs algorithm.

Organisationseinheit(en)
Geodätisches Institut
Externe Organisation(en)
Technische Universität Clausthal
Hochschule Anhalt
Typ
Aufsatz in Konferenzband
Seiten
93-99
Anzahl der Seiten
7
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computer in den Geowissenschaften, Geophysik
Elektronische Version(en)
https://doi.org/10.1007/1345_2023_210 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“