Tidal level prediction using combined methods of Harmonic Analysis and Deep Neural Networks in Southern Coastline of Iran

verfasst von
Kourosh Shahryarinia, MohammadAli Sharifi, Saeed Farzaneh
Abstract

Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low.

Organisationseinheit(en)
Geodätisches Institut
Externe Organisation(en)
University of Tehran
Typ
Artikel
Journal
Marine Geodesy
Band
45
Seiten
645-669
Anzahl der Seiten
25
ISSN
0149-0419
Publikationsdatum
2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Ozeanographie
Ziele für nachhaltige Entwicklung
SDG 14 – Lebensraum Wasser
Elektronische Version(en)
https://doi.org/10.1080/01490419.2022.2116615 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“