Recursive least-squares estimation in case of interval observation data

verfasst von
Hansjörg Kutterer, Ingo Neumann
Abstract

In the engineering sciences, observation uncertainty often consists of two main types: random variability due to uncontrollable external effects and imprecision due to remaining systematic errors in the data. Interval mathematics is well suited to treat this second type of uncertainty if settheoretical overestimation is avoided. Overestimation means that the true range of parameter values is only quantified by rough, meaningless outer bounds. If recursively formulated estimation algorithms are used, overestimation becomes a key problem. This occurs in state-space estimation which is relevant in real-time applications and which is essentially based on recursions. Hence, overestimation has to be analysed thoroughly to minimise its impact. In this study, observation imprecision is referred to physically meaningful influence parameters. This allows to reformulate the recursion algorithm yielding an increased efficiency and to rigorously avoid overestimation. In order to illustrate and discuss the theoretical results, a damped harmonic oscillation and the monitoring of a lock are presented as examples.

Organisationseinheit(en)
Geodätisches Institut
Externe Organisation(en)
Universität der Bundeswehr München
Typ
Artikel
Journal
International Journal of Reliability and Safety
Band
5
Seiten
229-249
Anzahl der Seiten
21
ISSN
1479-389X
Publikationsdatum
11.07.2011
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Sicherheit, Risiko, Zuverlässigkeit und Qualität
Elektronische Version(en)
https://www.inderscience.com/info/inarticle.php?artid=41178 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“